3.3: Raonal Funcons of the Form

$$f(x) = \frac{ax + b}{cx + d}$$

Key Ideas:

f(x)=p(x)

 $\frac{b}{cx+d}$ have a vercal asymptote Raonal funcons of the form defined by $x = \frac{-d}{dx}$ and a horizontal asymptote defined by y = 0. For example, the graph of $f(x) = \frac{2}{x-3}$

• Most raonal funcons of the form $f(x) = \frac{ax + b}{cx + d}$ ave a vercal asymptote defined by $x = \frac{-d}{c}$ and a horizontal asymptote defined by $y = \frac{a}{c}$. For example see the graph of $f(x) = \frac{4x - 1}{2x - 1}$

$$f(x) = \frac{ax}{x} + \frac{b}{x}$$

$$\frac{cx}{x} + \frac{d}{x}$$

• The excepon occurs when the numerator and the denominator both contain a common linear factor. This results in a graph of a horizontal line that has a hole where the zero of the common factors occurs. As a result, the graph has no asymptotes. For example see the graph of

$$f(x) = \frac{4x - 8}{x - 2}$$

Exploring Quoents of Polynomial Funcons

Note:

- The quoent of two polynomial funcons results in a raonal funcon which oen has one or more disconnuies.
- The breaks or disconnuies in a raonal funcon occur where the funcon is undefined. The funcon is undefined at values where the denominator is equal to zero. As a result, these values must be restricted from the domain of the funcon.
- The values that must be restricted from the domain of a raonal funcon result in key characteriscs that define the shape of the graph. These characteriscs include a combinaon of vercal asymptotes (also called infinite disconnuies) and holes (also called point disconnuies).
- The end behaviour of many raonal funcons is determined by either horizontal asymptotes or oblique asymptotes.
- An oblique asymptote is an asymptote that is not vercal nor horizontal, but slanted.

Point Disconnuies (Holes)

Hole Disconnuies

- A raonal funcon, $f(x) = \frac{p(x)}{q(x)}$ has a hole at x = a, if $\frac{p(a)}{q(a)} = \frac{0}{0}$. This occurs when p(x) and q(x) contain a common factor of (x a).
- Consider the following raonal funcon:

$$y = \frac{x^2 - 1}{x - 1}$$

$$y = \frac{(x-1)(x+1)}{(x-1)}$$

$$y = x+1$$

Consider the following raonal

f(-1) = 0 1+2-3 funcon:

hole at x=-1

Horizontal asymptote at X=0

Oblique (slant) Asymptotes

Consider the following raonal funcon:

 $y = \frac{x^2 + 4}{x + 1} \implies x \neq -1$ to find the egn of the
Slant asymptote, divide $P(x) \doteq q(x) \text{ find the quotient}$

$$\begin{array}{c} x - 1 \\ x^2 + 0x + 4 \\ x^2 + 1x \end{array}$$
 $\begin{array}{c} x - 1 \\ -1x + 4 \\ -1x - 1 \end{array}$

- : egn of the

slant asymptote

is y=x-1

Oblique (slant) Asymptotes

Consider the following raonal funcon:

$$y = \frac{0.5x^{2} + 1}{x - 1}$$

$$X \neq 1$$

$$0.5x + 0.5$$

$$(-1) 6.5x^{2} + 0x + 1$$

$$0.5x^{2} - 0.5x$$

$$0.5x + 1$$

$$0.5y - 0.5$$

Oblique (slant) Asymptotes

- A raonal funcon, $f(x) = \frac{p(x)}{q(x)}$ has an oblique (slant) asymptote only when the degree of p(x) is greater than the degree of q(x) by exactly 1.
- To determine the equaon of the oblique asymptote, simply carry out the polynomial division $p(x) \div q(x)$. The quoent will represent the equaon of the oblique asymptote.

Key Ideas

• A rational function, $f(x) = \frac{p(x)}{q(x)}$, has a hole at x = a if $\frac{p(a)}{q(a)} = \frac{0}{0}$. This occurs when p(x) and q(x) contain a common factor of (x - a). For example, $f(x) = \frac{x^2 - 4}{x - 2}$ has the common factor of (x - 2) in the numerator and the denominator. This results in a hole in the graph of f(x) at x = 2.

• A rational function, $f(x) = \frac{p(x)}{q(x)}$, has a vertical asymptote at x = a if $\frac{p(a)}{q(a)} = \frac{p(a)}{0}$. For example, $f(x) = \frac{x+1}{x-2}$ has a vertical asymptote at x = 2.

• A rational function, $f(x) = \frac{p(x)}{q(x)}$, has a horizontal asymptote only when the degree of p(x) is less than or equal to the degree of q(x). For example, $f(x) = \frac{2x}{x+1}$ has a horizontal asymptote at y = 2.

• A rational function, $f(x) = \frac{p(x)}{q(x)}$, has an oblique (slant) asymptote only when the degree of p(x) is greater than the degree of q(x) by exactly 1. For example, $f(x) = \frac{x^2 + 4}{x + 1}$ has an oblique asymptote.

