6.4: Power Law of Logarithms

Note:

- Exponenal equaons are equaons in which the exponent is the unknown variable.
- Because of the inverse relaonship between exponenal funcons and logarithmic funcons, logarithms provide a way to solve such equaons
- In order to solve exponenal equaons, we need a way of dealing with the unknown variable exponent

Recall:

- In secon 6.2 we aempted to find an approximate value for $\log_2 10$
- We did so by converng the logarithmic expression to an exponenal equaon and then using guess and check:

$$y = \log_2 10 \longrightarrow 2^y = 10$$

• Most scienfic calculators can only evaluate logarithms in base 10, so we need a new method to evaluate logarithms that are not base 10.

Power Law of Logarithms

Proving the Power Law:

• Let $w = \log_b x$ $W = \log_b X$

• Write the equaon in exponenal form:

• Raise both sides to the exponent n:

$$\left(\int_{\infty}^{\infty} \right)_{a} = X_{a}$$

• Apply the power law of exponents

• Rewrite in exponenal form:

• Substute $w = \log_b x$ to eliminate w:

Power Law of Logarithms:

$$\log_b x^n = n \log_b x \qquad b > 0, b \neq 1, x > 0, n \in \mathbb{R}$$

Example 1: Apply the Power Law of Logarithms

Evaluate

- (a) $\log_3 9^4$
- (b) $\log_2 8^5$
- (c) $\log 0.001^2$
- (d) $\log_5 \sqrt{125}$

Sol'n: a) $log_3 9^4$ $y = log_3 (3^2)^4$ $3^4 = 3^4$ $y = 8^4$ (b) $log_2 8^4$ $y = log_2 8^4$ $y = log_2 8^4$ $y = 2^4$ $y = 2^4$	\[\left\{ \teft\{ \te} \teft\{ \left\{ \teft\{ \teft\
	log 0.001° 2log 0.001 2log 10° 2(-3)6
(d) $log s \sqrt{125}$ $5 = \sqrt{125}$ $5 = 125 \frac{1}{2}$ $5 = (5)$ $4 = \frac{3}{2}$	log 5 V125 log 5 (125)/2 1 log 5 5 1 (3) 2 = 3/2

Example 2:

Suppose you invest \$100 in an account that pays 5% interest, compounded annually. The amount, A, in dollars, in the account aer any given me, t, in years, is given by $A = 100(1.05)^t$. Find the me it takes for the inial amount of \$100 to double.

Sol'n:
$$A = 100 (1.05)^{t}$$

$$200 = 100 (1.05)^{t}$$

$$2 = (1.05)$$

$$109 = 109 (1.05)^{t}$$

$$109 = 100 (1.05)^{t}$$

$$100 = 100 (1.05)^{t}$$

$$10$$

Change of Base Formula

A formula can be used to determine the value of logarithms of any base $b>0, b\neq 1$

Proving the Change of Base Formula

• Let $w = \log_b m$

• Write the equaon in exponenal form:

• Take the common logarithm of both sides:

• Apply the power law of logarithms

Express in terms of W.

Change of Base Formula:

Use this formula to calculate a logarithm with any base, by expressing it in terms of a common logarithm

$$\log_b m = \frac{\log m}{\log b} \qquad m > 0, b > 0, b \neq 1$$

Example 3: Evaluate Logarithms With Various Bases

Evaluate, correct to three decimal places

- (a) $\log_5 17$
- (b) $\log_{\frac{1}{2}} 10$

$$\frac{Sol'n:}{(a)} \log_5 17 = \frac{\log 17}{\log 5} = 1.760$$

$$(b) \log_{1/2} 10 = \frac{\log 10}{\log_{1/2}} = -3.322$$

$$pq \text{ may is}$$

$$pq \text{ may is}$$