6.2: Logarithms

Recall:

y = bx; x=by

- Exponenal Funcons of the form: $y = \mathcal{B}$ llow us to determine a value of y for each given value of x. Y is a funcon of x.
- Each x-value in the inverse graph gives a unique y-value, therefore the inverse is a funcon of x
- In the inverse funcon, the y-value is the exponent to which the base, b, must be raised to produce x, $b^y = x$
- In funcons, we prefer to write the y variable in terms of x, therefore the inverse relaonship is wrien as $y = \log_b x$

$$b^{y} = x y = \log_{b} x$$

Exponenal relaonships can be wrien using logarithm notaon:

$$2^{3} = 8 \longrightarrow 3 = \log_{2} 8$$

$$5^{2} = 25 \longrightarrow 2 = \log_{5} 25$$

$$r^{s} = t \longrightarrow 5 = \log_{7} t$$

The Logarithm Funcon

The **logarithm funcon** is defined as $y = \log_b x$ or y equals the logarithm of x to the base b.

This funcon is defined only for $b > 0, b \ne 1$

Example 1

Re-write each equaon in logarithmic form

Re-write each equaon in logarithmic form (a)
$$16 = 4^2$$
 $Q = 100 \text{ y/b}$ (b) $3^{-3} = \frac{1}{27}$ $Q = 100 \text{ y/b}$ (c) $M = n^3$ $Q = 100 \text{ y/b}$

(c)
$$m = n^3$$
 3 = $\log_n M$

Example 2

Re-write each of the following in the exponenal form

(b)
$$3 = \log_{10} 1000$$
 \longrightarrow $10^3 = 1000$

(c)
$$y = \log_{\frac{1}{4}} x$$
 \longrightarrow $\left(\frac{1}{4}\right)^4 = x$

Note:

A common logarithm is a logarithm with a base of 10. It is not necessary to write the base for a common logarithm: $\log x = \log_{10} x$

Example 3

Evaluate each of the following:

(a) $\log_4 64$

(d) $\log_3 \sqrt{3}$

(b) $\log_{5} 1$

(e) $\log_{16} 4$

(c) $\log_{10} 0.1$

(f) $\log_2\left(\frac{1}{8}\right)$

(a) Let
$$x = log_{3} 64$$

(b) Let $x = log_{5} 1$

(c) Let $x = log_{3} 64$
 $4 = 64$
 $x = 3$

(d) Let $x = log_{3} \sqrt{3}$

(e) Let $x = log_{16} 4$
 $3 = \sqrt{3}$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 $4 = 64$
 4

Example 4: Approximate Logarithms

Find an approximate value for each logarithm

(a) $log_2 10$

(b) log 2500

Sol'n:

$$\Rightarrow$$
 Let $y = log_2 10$
 \Rightarrow 10
 \Rightarrow 2 = 8
 \Rightarrow 3.5
 \Rightarrow 11.3
 \Rightarrow 3.3
 \Rightarrow 3.3
 \Rightarrow 3.3
 \Rightarrow 3.3
 \Rightarrow 4.98
 \Rightarrow 4.98
 \Rightarrow 4.98
 \Rightarrow 3.32
 \Rightarrow 4.98
 \Rightarrow 3.32