4.1: Radian Measure

Determining the meaning of a radian measure: GSP Demo

• Follow the invesgaon on page 203 - 204

<u>Definion of a Radian</u>

• The radian measure of an angle θ is defined as the length, a, of the arc that subtends the angle divided by the radius, r, of the circle.

$$\theta = \frac{a}{r}$$

$$\theta = \frac{2\pi r}{r}$$
$$= 2\pi$$

• One complete revoluon measures 2π radians.

Converng Radians to Degrees

Converng Degrees to Radians

$$2\pi rad = 360^{\circ}$$

$$1rad = \left(\frac{360}{2\pi}\right)^{\circ}$$

$$1rad = \left(\frac{180}{\pi}\right)^{\circ}$$

$$360^{\circ} = 2\pi rad$$

$$1^{\circ} = \frac{2\pi}{360} rad$$
 217 = **360**

$$1^{\circ} = \frac{\pi}{180} rad$$

One radian is $\left(\frac{180}{\pi}\right)^{\circ}$, or approximately 57.3°. One degree is $\frac{\pi}{180}$ rad, or approximately 0.0175

Example 1: Convert 30° to radians

Example 2: Converng Radian Measure to Degree Measure

Determine the degree measure, to the nearest tenth, for each radian measure.

(a)
$$\frac{\pi}{4}$$
(b) 5.86

(A) $\frac{\pi}{4}$

$$= \frac{180}{4}$$

$$= 45^{\circ}$$

T/6 -> 0.52 rad

Example 3: Arc Length for a Given Angle

Bruce Wayne chooses a horse to ride on a carousel. The horse is located 9 m from the centre of the carousel. If this carousel turns through an angle of 15π , determine the length of the arc travelled by the horse, to the nearest tenth of a metre.

$$0 = \frac{a}{1} = \frac{a}{9} = \frac{a}{15\pi} = \frac{a}{9}$$
 $35\pi = \frac{a}{24 \cdot 1} = \frac{a}{9}$

Example 4: Angular Velocity of a Rotang Object

The angular velocity of a rotang object is the rate at which the central angle changes with respect to me.

The London Eye Ferris wheel has a diameter of 135 m and completes one revoluon in 30 min.

(a) Determine the angular velocity, v, in radians per second.

$$30min = \frac{1800 \text{ seconds}}{V = \frac{1 \text{ revolution}}{1800 \text{ seconds}}}$$

$$= \frac{2TT}{1800} \quad V = \frac{900}{1800}$$

(b) How far has a rider travelled at 10 min into the ride?

1-11, (6, 17)
$$\Theta = (600 \text{ seconds}) \left(\frac{TT}{966}\right)$$

Pig 24- 209 = $\frac{600 \text{ TT}}{900}$ 27/3. $\Theta = \frac{6}{7}$

distance travelled: $\alpha = \Theta r$
= $\frac{2\pi}{3} (67.5)$
= $\frac{2\pi}{3} (41.4 \text{ m})$

Example 5: Angular Velocity of a Rotang Object

The hard disk in a personal computer rotates at 7200 rpm (revoluons per minute). Determine its angular velocity, in:

(a) Degrees per second

(b) Radians per Second.