2.4: Families of Polynomial Funcons

- The graphs of polynomial funcons that belong to the same family have the same x-intercepts but have different y-intercepts (unless zero is one of the intercepts).
- An equaon for the family of polynomial funcon with zeros a_1 , a_2 , a_3 , ..., a_n is $y = k(x a_1)(x a_2)(x a_3)...(x a_n)$ where $k \in \mathbb{R}, k \neq 0$

Example 1: Represent a Family of Funcons Algebraically

The zeros of a family of quadrac funcons are 2 and -3.

- (a) Determine an equaon for this family of funcons
- (b) Write equaons for two funcons that belong to this family.
- (c) Determine an equaon for the member of the family that passes through the point (1, 4).

Example 2: Determine an Equaon for a Family of Cubic Funcons Given Integral Zeros

The zeros of a family of cubic funcons are -2, 1, and 3

- (a) Determine an equaon for this family
- (b) Write equaons for two funcons that belong to this family
- (c) Determine an equaon for the member of the family whose graph has a y-intercept of -15
- (d) Sketch graphs of the funcons in parts b) and c)

(a)
$$f(x) = k(x+2)(x-1)(x-3)$$

(b) $h = 2$ If $h = -3$
 $f(x) = 2(x+2)(x-1)(x-3)$
(c) (0_1-15) is on the graph
$$f(x) = k(x+2)(x-1)(x-3)$$

$$-15 = k(0+2)(0-1)(0-3)$$

$$-15 = k(2)(-1)(-3)$$

$$-15 = 6k$$

$$k = -\frac{5}{2}$$

$$f(x) = \frac{5}{2}(x+2)(x-1)(x-3)$$

$$f(x) = \frac{5}{2}(x+2)(x-1)(x-3)$$

$$f(x) = \frac{5}{2}(x+2)(x-1)(x-3)$$

$$f(x) = \frac{5}{2}(x+2)(x-1)(x-3)$$

Example 3 Determine an Equaon for a Family of Quarc Funcons Given Irraonal Zeros

- (a) Determine a simplified equaon for the family of quarc funcons with zeros ± 1 and $2 \pm \sqrt{3}$
- (b) Determine an equaon for the member of the family whose graph passes through the point (2, 18)

Example 4: Determine an Equaon for a Quarc Funcon from a Graph

Determine an equaon for the quarc funcon represented by this graph

Key Ideas:

- The real roots of a polynomial equaon P(x) = 0 correspond to the x-intercepts of the graph of the polynomial funcon P(x)
- The x-intercepts of the graph of a polynomial funcon correspond to the real roots of the related polynomial equaon
- If a polynomial equaon is factorable, the roots are determined by factoring the polynomial, seng its factors equal to zero, and solving each factor
- If a polynomial equaon is not factorable, the roots can be determined from the graph using technology.