2.3: Polynomial Equaons

Recall:

- To solve a quadrac equaon such as $2x^2 12 = -5$ we first bring everything over to one side, then factor the quadrac to determine its factors, then use the zero product theorem to determine the roots.
- The same principles apply in solving a polynomial equaon
 - > Bring everything over to 1 side
 - > Factor the polynomial equaon using factor theorem, polynomial division, etc.
 - > Determine the roots using the zero product theorem

Example 1: Solve Polynomial Equaons by Factoring and Factor Theorem

Solve:

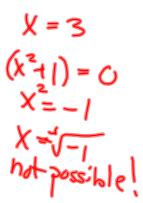
(a)
$$(3x^3 + x^3) - (12x - 4) = 0$$

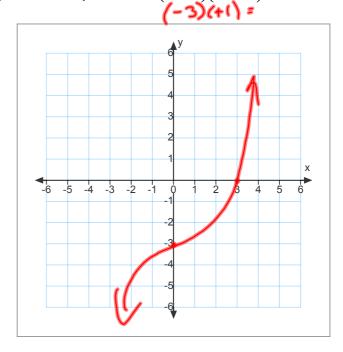
(b) $2x^3 + 3x^2 - 11x - 6 = 0$
(c) $(3x^3 + 3x^2 - 11x - 6 = 0)$
(d) $(3x^3 + 3x^2 - 11x - 6 = 0)$
(e) $(3x^3 + 3x^2 - 11x - 6 = 0)$
(f) $(3x^3 + 3x^2 - 11x - 6 = 0)$
(g) $(3x^3 + 3x^2 - 11x - 6 = 0)$
(h) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(i) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(ii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(iii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(iii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(iii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(iii) $(2x^3 + 3x^2 - 11x - 6 = 0)$
(iii) $(2x^3 + 3x^2 - 11x - 6 + 0)$
(iii) $(2x^3 + 3x^2 - 11x - 6 + 0)$
(iii) $(2x^3 + 3x^2 - 11x - 6 + 0$

- x=2,-3,-1/2

Note:

• Some polynomial equaons may have real and non-real roots. Consider the soluon to the polynomial equaon: $(x-3)(x^2+1)=0$





Factoring a Sum or Difference of Cubes

Sum of Cubes

• An expression that contains two perfect cubes that are added together is called a *sum of cubes* and can be factored as follows:

$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

• An expression that contains perfect cubes where one is subtracted from the other is called a *difference of cubes* and can be factored as follows:

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

Example 2: Factor a sum or difference of cubes

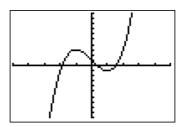
Factor the following expressions:

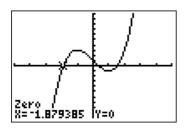
- (a) $27x^3 + 125$
- (b) $7x^4 448$
- (c) $x^9 512$

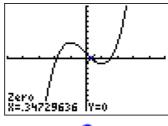
Example 3: Determining the Roots of a Non-Factorable Polynomial Eqn

- Some polynomial equaons are non-factorable. If this occurs, the roots can be found using graphing technology. In the case of a non-factorable polynomial equaon, the zeros of the funcon are non-integer values.
 - (a) Solve $x^3 3x = -1$. Round the roots to one decimal place.

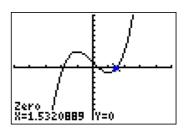
$$x^3 - 3x + 1 = 0$$







0.3



1.5

Key Ideas:

- The real roots of a polynomial equaon P(x) = 0 correspond to the x-intercepts of the graph of the polynomial funcon P(x)
- The x-intercepts of the graph of a polynomial funcon correspond to the real roots of the related polynomial equaon
- If a polynomial equaon is factorable, the roots are determined by factoring the polynomial, seng its factors equal to zero, and solving each factor
- If a polynomial equaon is not factorable, the roots can be determined from the graph using technology.

 P 9 # 110-112

 # 11-9 (p.k n choose)

 # 11 15 and # 19