2.2: The Factor Theorem

Factor Theorem:

x - b is a factor of a polynomial P(x) if and only if P(b) = 0. Similarly, ax - b is a factor of P(x) if and only if $P\left(\frac{b}{a}\right) = 0$.

Example 1

Determine if the binomials x + 1 and 2x + 1 are factors of the polynomial

$$P(x) = 2x^{3} + 3x^{2} - 3x - 2$$

$$P(-1) = 2(-1)^{3} + 3(-1)^{3} - 3(-1) - 2$$

$$P(-\frac{1}{2}) = 2(-\frac{1}{2})^{3} + \frac{3(-\frac{1}{2})^{3} - \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3} + \frac{3(-\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3} + \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3} + \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3} + \frac{3(\frac{1}{2})^{3}}{2} - \frac{3(\frac{1}{2})^{3}}{2}$$

Consider the polynomial $P(x) = x^3 + 2x^2 - 5x - 6$

A value x = b that sasfies P(b) = 0 also sasfies $b^3 + 2b^2 - 5b - 6 = 0$ or the equaon $b^3 + 2b^2 - 5b = 6$

The function of
$$b^3 + 2b^2 - 5b = 6$$

Then the value of $b^2 + 2b - 5$ will also be an integer. Then the value of $b^2 + 2b - 5$ will also be an integer.

The pussble integer values a factor of $b^2 + 2b - 5$ in the product of b

• The relaonship between the factors of a polynomial and the constant term in the polynomial expression is stated in the integral zero theorem

Integral Zero Theorem:

If x - b is a factor of a polynomial P(x) with leading coefficient 1 and remaining coefficients that are integers, then b is a factor of the constant term of P(x).

• Once one factor of a polynomial is found, polynomial division or synthec division is used to determine the other factors.

Example 2

Find factors of 6, 80

Factor
$$x^3 + 2x^2 - 5x - 6$$
 fully

 $P(2) = 2 + 2(2)^2 - 5(2) - 6$
 $P(3) = 8 + 8 - 10 - 6$

Find factors of 6, 80

That when we sub one of those #s, say $x = b$ into $a = b$ into $a = b$.

 $a = b = b$
 $a = b = b$

$$P(2) = 8 + 8 - 10 - 6$$
 ±1.
 $\therefore (x-2)$ is a factor!

$$\frac{(x-2)(x^2+4x+3)}{(x-2)(x+1)(x+3)}$$

Example 3

Factor
$$x^4 + 3x^3 - 7x^2 - 27x - 18$$
 fully.

$$f(-2) = 0 \quad \therefore \quad \times + 2 \text{ is a factor.} \quad f(1) = ?$$

$$-2 \quad 1 \quad 3 \quad -7 \quad -27 \quad -18 \quad f(-1) = ?$$

$$-2 \quad -2 \quad 18 \quad 18 \quad f(-2) = 0$$

$$(x+2) \quad (x^3 + x)^2 - (9x - 9)$$

$$(x+2) \quad (x+1) \quad -9(x+1)$$

$$(x+2)(x+1) \quad (x^2 - 9)$$

$$(x+2)(x+1) \quad (x-3) \quad (x+3)$$

$$(x+2) (x^3+x^2-9x-9)$$

$$f(3)=0$$

$$3) 1 1-9-9 ...(x-3) is a factor.$$

$$3 12 9$$

$$(x+2) (x^2+4x+3)$$

$$(x+2) (x+3) (x+1) (x-3)$$

Consider a factorable polynomial such as $P(x) = 3x^3 + 2x^2 - 7x + 2$. Since the leading coefficient is 3, one of the factors must be of the form 3x - b where b is a factor of the constant term 2 and $P\left(\frac{b}{3}\right) = 0$

To determine the values of x that should be tested to find*b*, the integral zero theorem can be extended to include polynomials with leading coefficients that are not 1. This extension is known as the **raonal zero theorem**.

Raonal Zero Theorem:

Suppose P(x) is a polynomial funcon with integer coefficients and $x = \frac{b}{a}$ is a zero of P(x), where a and b are integers and $a \neq 0$. Then,

- b is a factor of the constant term of P(x)
- a is a factor of the leading coefficient of P(x)
- ax b is a factor of P(x)

Example 4

The forms used to make large rectangular blocks of ice come in different dimensions such that the volume, V, in cubic cenmetres, of each block can be modelled by $V(x) = 3x^3 + 2x^2 - 7x + 2$

- a) Determine possible dimensions in terms of x, in metres, that result in this volume.
- (b) What are the dimensions of blocks of ice when x = 1.5?

b: 2, factors of 2:
$$\pm 1,\pm 2$$
.
A: 3, factors of 3: $\pm 1,\pm 3$
possibilities to test: $\pm \frac{1}{1},\pm \frac{2}{1},\pm \frac{1}{3},\pm \frac{2}{3}$
P($\frac{1}{3}$) = 0 : $(3x-1)$ is a factor!

$$\frac{x^2+x-2}{3x^3-x^2} + \frac{x^2+x-2}{3x^2-7x+2}$$

$$\frac{3x^3-x^2}{3x^2-7x} + \frac{3x^2-7x+2}{3x^2-7x}$$

$$\frac{3x-1}{3x-1}(x+2)(x-1)$$
: dimensions are: $(3x-1)$; $(x+2)$; $(x-1)$