1.5: Slopes of Secants and Average Rate of Change

Recall Definions:

- Rate of Change: A measure of the change in one quanty (the dependent variable) with respect to a change in another quanty (the independent variable)
- Average Rate of Change: a change that takes place over an interval
- Instantaneous Rate of Change: a change that takes place in an instant

Theorem:

For a funcon, f(x), the average rate of change in the interval $x_1 \le x \le x_2$

is
$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Example 1

The following table represents the growth of bacteria populaon over a 10 hour period. During which 2 hour period did the populaon grow the fastest?

X	Y
0	850
2	
u	1481
6	1981
	1707
8	2577
10	3400

	Δb	Δt	$\overline{\Delta t}$
Time Interval (h)	Change in	Change in me (t)	Average Rate of
	number of		Change
	Bacteria		(bacteria/hour)
0 <t<2< td=""><td>272</td><td>3</td><td>136</td></t<2<>	272	3	136
Q<+<4	359	2	179.5
4526	473	Q	236.5
6< £ < 8	623	2	311.5
84410	823	3	411.5

Example 1: Using a Graphical Model

3

X	Y	
0	850	
2	1122	
4	1481	
6	1954	
8	2577	
10	3400	

Secant Line: A line that passes through two points on the graph of a relaon.

Secant lines are used to determine the average rate of change over an interval.

Example 2: Determining Average Rates of Change from an Equaon

A rock is tossed upward from a cliff that is 120 m above the water. The height of the rock above the water is modelled by $h(t) = -5t^2 + 10t + 120$ where h(t) is the height in metres and t is the me in seconds.

(a) Calculate the average rate of change in height during each of the following me intervals:

- change in height during each 1 s interval? What does this mean?
- (c) Describe what the average rate of change means in this situaon.

$$h(t) = -5t^{2} + 10t + 120$$

$$(i) O(t) | (ii) | (4 \le 2)$$

$$= h(1) - h(0)$$

$$= \frac{h(1) - h(0)}{1 - 0}$$

$$= \frac{120 - 125}{1}$$

$$= 5 \frac{1}{1} = -5 \frac{1}{1} =$$

$$h(t) = -5t^{2} + 10t + 120$$

$$\frac{111}{2} = \frac{h(3) - h(2)}{3 - 2}$$

$$\frac{h(3) - h(2)}{3 - 2}$$

$$\frac{80 - 105}{1}$$

$$\frac{-15}{-15m/5}$$

1.5: Average Rates of Change: Key Ideas

- A rate of change is a measure of how quickly one quanty (the dependent variable) changes with respect to another quanty (the independent variable)
- Average rates of change:
 - > represent the rate of change over a specific interval
 - > correspond to the slope of the secant between two points P_1 (x_1 , y_1) and P_2 (x_2 , y_2)

 An average rate of change can be determined by calculang the slope between two points given in a table of values or by using an equaon