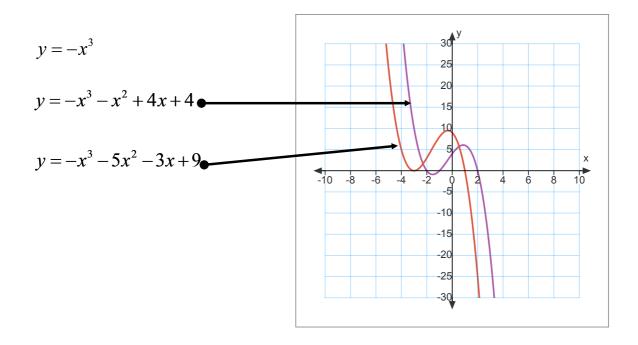
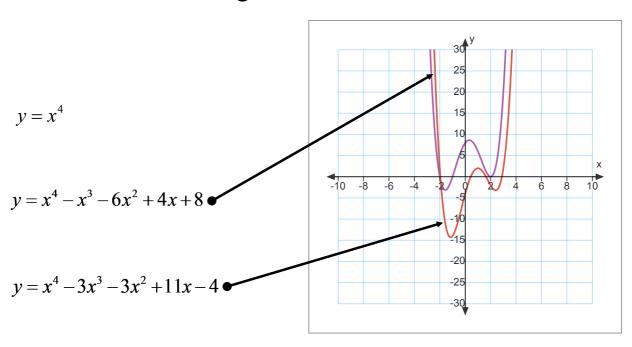
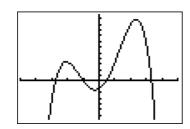

1.2 Characteristics of Pol	ynomial Functions (Completed Notes).notebook February	25,	, 2014
----------------------------	---------------------	-----------------	---------------------	-----	--------


1.2: Characteristics of Polynomial Functions

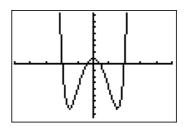
Learning Goals:

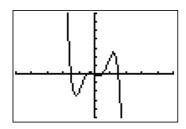

- identify the characteristics of the graphs and equations of general polynomial functions
- establish the relationship between finite differences and the equations of polynomial functions

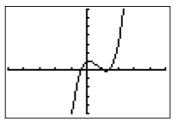
Investigating cubic functions - odd degree functions



Investigating quartic functions - even degree functions




Example: Match a polynomial function with its graph


$$y = -x^4 + 10x^2 + 5x - 4$$

$$y = x^6 - 16x^2 + 3$$

$$y = -2x^5 + 5x^3 - x$$

$$y = 2x^3 - 4x^2 + x + 1$$

Investigating Finite Differences

Differences				
Х	У	First	Second	Third
-3	-36	0	0	0
-2	- 12	24	0	0
-1	- 2	10	-(4	0
0	0	9	-8	6
ſ	0	0	- 2	6
3	4	4	4	6
3	18	14	10	6
ų	48	30	16	6

constant 3rd differences, ... this polynomial function is of degree 3.

Finite Differences

For a polynomial function of degree n, where n is a positive integer, the nth differences:

- are equal (constant)
- have the same sign as the leading co-efficient
- are equal to a[n x (n 1) x ... x 2 x 1], where a is the leading coefficient

$$[n \times (n-1) \times ... \times 2 \times 1] = n.$$

$$50, 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$$

Example:

Each table of values represents a polynomial function. Use finite differences to determine:

- i) the degree of the polynomial function
- ii) the sign of the leading coefficient
- iii) the value of the leading coefficient

х	у	1st differences	2nd differences	3rd differences
-3	-36			
-2	-12	24		
-1	-2	10	- 14	
0	0	a	- 8	6
1	0	0	-a	6
2	4	4	4	6
3	18	14	10	6
4	48	30	16	6

(i) Degree = 3 (b/c constant 3rd differences)
(ii) Sign of leading co-efficient is "+"

(iii)
$$6 = \alpha(3!)$$
 : leading co-efficient $6 = (3x2x1)\alpha$: $1 = 1$ is +1.

x	у	1st differences	2nd differences	3rd differences	4th differences
-2	-54	0	0	0	0
-1	-8	46	0	0	0
0	0	8	-38	0	0
1	6	6	<i>-</i> 2	36	0
2	22	16	10	12	-24
3	36	14	-2	-12	-24
4	12	- 24	-38	- 36	-24
5	-110	-133	-98	-60	-24

(i) Degree = 4
(ii) Sign of leading (o-efficient is -')
(iii)
$$-24 = 4! \, \alpha$$
 : leading (o-efficient $-24 = 24a$: $-34 = 4a$: -34