1.1: Power Functions

Investigate key features of the graphs of power functions

Terminology

- End Behaviour: the behaviour of the y-values as x increases (as x approaches positive infinity X→∞) and as x decreases (as x approaches negative x→ -∞ infinity
- Line Symmetry: a graph has line symmetry if there is a line x=a that divides the graph into two parts such that each part is a reflection of the other in the line x = a.

• Point Symmetry: a graph has point symmetry about a point (a, b) if each part of the graph on one side of (a,b) can be rotated 180° to coincide with part of the graph on the other side of (a, b).

Key Features of the Graph	y = x ⁿ , n is odd	y = x ⁿ , n is even
Domain	{x ∈ R }	{x ∈ R }
Range	{y + R}	{y>0,y∈R}
Symmetry	Point	line
End Behaviour	x-20, y-20	x->0, y-100 x->0, u-0<
	X->-01 1 ->-00	1

Interval Notation

Sets of real numbers may be described in a variety of ways:

- as an inequality, $-3 < x \le 5$
- in interval (or bracket) notation
- graphically on a number line

Intervals that are infinite are expressed using the symbol ∞ or $-\infty$ Square brackets indicate that the end value is included in the interval, and round brackets indicate that the end value is NOT included

A round bracket is used at infinity

Example

Write each function in the appropriate row of the second column of the table. Give reasons for your choices.

$$y = 2x$$

$$y = -3x^{2}$$

$$y = 5x^{6}$$

$$y = x^{7}$$

$$y = -0.5x^{8}$$

$$y = -\frac{2}{5}x^{9}$$

$$y = -4x^{5}$$

End Behaviour	Function	Reasons
Extends from quadrant 3 to quadrant 1	y = 2x , y = x7	odd degree + leading
Extends from quadrant 2 to quadrant 4	$y = -\frac{2}{5}x^{9}, y = -4x^{5}$	odd degree 'leading co-cff
Extends from quadrant 2 to quadrant 1	7=5x6 17=x10	even degree, + leading co-ell.
Extends from quadrant 3 to quadrant 4	y=-3x2/y=-6.5x8	even degree - leading. co-efs.

Consolidate

- Explain why the function y= 3 is a polynomial function
- How can you use a graph to tell whether the leading coefficient of a power function is positive or negative?
- How can you use a graph to tell whether the degree of a power function is even or odd?